ON SUBMANIFOLDS OF HOPF MANIFOLDS

BY

SORIN DRAGOMIR

Dipartimento di Matematica, Univ. degli Studi di Bari, 70125 Bari, Italy

To Professor A. Cossu on the Occasion of his 65th Birthday

ABSTRACT

The main results we obtain are as follows: an invariant submanifold of a Hopf manifold with semi-flat normal connection is either a complex hypersurface or a totally-umbilical quasi-Einstein submanifold with a flat normal connection. The only totally-umbilical invariant submanifolds of zero scalar curvature of a Hopf manifold are the totally-geodesic flat surfaces.

1. Introduction

Let H^m be a Hopf manifold of complex dimension m, m > 2 (cf. [10, p. 137]); it is a PK_0 -manifold (in the sense of [12]) with the Hermitian metric g_0 given by the diffeomorphism $H^m \approx S^{2m-1} \times S^1$, cf. [12, p. 264]. Let J denote the complex structure on H^m . Let M be a submanifold of H^m of real dimension 2n, $n \le m$. We denote by $E \to M$ the normal bundle of the given immersion of M in H^m . Let ∇^\perp be the normal connection (in the normal bundle E) of M, and R^\perp its curvature. Let g denote the first fundamental form; we say M has semi-flat normal connection if

$$(1.1) R^{\perp}(X, Y)\xi = \rho_0 g(X, PY) \operatorname{nor}(J\xi)$$

for some real-valued smooth function ρ_0 on M and any tangent vector fields X, Y on M, respectively any (normal) section ξ in E. This generalizes slightly the definition in [15, p. 107] where $\rho_0 = 2$; actually, if M is invariant (i.e. $J_x(T_x(M)) = T_x(M)$, for any $x \in M$) and the ambient space is Kaehler and $n \ge 2$, then $\rho_0 = \text{constant}$, cf. lemma 9.1 in [15, p. 114]. Also $PX = \tan(JX)$,

while \tan_x , nor_x denote the natural projections of the direct sum decomposition $T_x(H^m) = T_x(M) \oplus E_x$, $x \in M$. We obtain the following:

THEOREM 1. Let M be an invariant submanifold with a semi-flat normal connection of the Hopf manifold H^m , $\dim(M) = 2n$. If m - n > 1 then M is a totally-umbilical quasi-Einstein submanifold with a flat normal connection.

To clarify Theorem 1, we also state:

THEOREM 2. Any totally-umbilical submanifold of a Hopf manifold is a quasi-Einstein manifold.

Let Ric be the Ricci form of M; then M is a *quasi-Einstein* submanifold (cf. [6]) if Ric = $a \cdot g + b \cdot \omega \otimes \omega$, for some real-valued smooth functions a, b on M. Here ω denotes the 1-form naturally induced on M by the Lee form of H^m . If M is invariant then (M, g) is a locally conformal Kaehler (l.c.K.) manifold (cf. [12-14]) and

$$\omega = \frac{1}{n-1} i(\Omega) d\Omega,$$

where $i(\cdot)$ is the interior product (cf. [5]) and Ω the Kaehler 2-form of M. We also obtain:

THEOREM 3. Let M be an invariant submanifold with semi-flat normal connection in H^m .

- (i) If $\operatorname{codim}(M) = 2$, $n \ge 2$, and (1.1) holds for some smooth function $\rho_0: M \to (0, +\infty)$, then M is a globally conformal Kaehler manifold and its Lee form is given by $\omega = -d \log \rho_0$.
- (ii) If codim(M) > 2 and M is strongly non-Kaehler then M cannot be an Einstein manifold.

Invariant submanifolds of l.c.K. manifolds were considered in [2], [14] and recently in [8].

We shall need the Yamabe functional of a compact submanifold M:

$$I(\varphi) = \|\varphi\|_N^{-2} E(\varphi)$$

where

$$E(\varphi) = \int_{M} (a \| d\varphi \|^{2} + \rho \varphi^{2}) * 1,$$

$$\|\varphi\|_{N} = \left(\int_{M} |\varphi|^{N} * 1\right)^{1/N}, \qquad N = \frac{2n}{n-1}, \qquad a = \frac{2(2n-1)}{n-1},$$

and ρ denotes the scalar curvature of M; cf. J. M. Lee and T. H. Parker [11]. The *Yamabe invariant* (a conformal invariant) of M is given by:

$$\mu_0 = \inf\{I(\varphi) : \varphi \in C^{\infty}(M), \varphi \ge 0, \varphi \ge 0\}$$

where $C^{\infty}(M)$ denotes the ring of all real-valued smooth functions on M. We obtain:

THEOREM 4. Let M be a compact totally-umbilical submanifold of real dimension 2n of the Hopf manifold H^m . If $n \ge \frac{1}{4} \parallel \omega \parallel^2$ and M has a nonpositive Yamabe invariant, i.e. $\mu_0 \le 0$, then M is totally-geodesic. Moreover, if additionally M is invariant then it is a generalized Hopf manifold, and it is a globally conformal Kaehler manifold provided that the sectional curvatures of M are subject to $k(p) \ge 1 - \frac{1}{2}(\omega(X)^2 + \omega(Y)^2)$, for any $p \in G_2(M)$ and any gorthonormal basis $\{X, Y\}$ in p.

Here $G_2(M) \rightarrow M$ denotes the Grassmann bundle of all 2-planes on M. The rest of the paper is devoted to the study of totally-umbilical submanifolds (of Hopf manifolds) with further restrictions on curvature. We obtain:

THEOREM 5. Let M^{2n} be a real 2n-dimensional totally-umbilical submanifold of H^m , $2 \le n \le m$; if M^{2n} is conformally-flat then it has a vanishing scalar curvature.

By a theorem of S. Goldberg and M. Okumura [7], if M^{2n} is conformally-flat and has constant scalar curvature ρ and the length of the Ricci tensor is $\leq \rho(2n-1)^{-1/2}$, $n \geq 2$, then M^{2n} is a space-form. If in turn M^{2n} is a totally-umbilical submanifold of H^m , then we have $\| \operatorname{Ric} \| = 0$ if and only if M^{2n} is a surface, i.e. n = 1. We actually prove:

THEOREM 6. Let M^{2n} , $n \ge 2$, be a conformally-flat totally-umbilical submanifold of H^m . Then M^{2n} is never a space of constant curvature.

THEOREM 7. The only invariant totally-umbilical submanifolds of zero scalar curvature in a Hopf manifold are the totally-geodesic flat surfaces.

THEOREM 8. In a Hopf manifold there do not exist any projectively-flat totally umbilical submanifolds with zero scalar curvature and nowhere vanishing 1-form ω .

The author is grateful to the referee for pointing out to him that actually Theorems 1 to 8 hold for the more general case of an ambient PK_0 -manifold, as well as for several suggestions which improved the original form of the manuscript.

2. Basic formulae

Let ω^* be the Lee form of the Hopf manifold (H^m, g_0) . Then $B^* = \#\omega^*$ is the Lee field, and # denotes raising of indices with respect to g_0 . Let ∇^* be the Levi-Civita connection of g_0 ; since g_0 is only a l.c.K. metric, ∇^* is not almost-complex. Yet H^m admits a significant almost-complex connection, namely the Weyl connection:

(2.1)
$$D_X^*Y = \nabla_X^*Y - \frac{1}{2}(\omega^*(X)Y + \omega^*(Y)X - g_0(X, Y)B^*)$$

for any $X, Y \in \mathcal{X}(H^m)$. In general, if M is a manifold then $\mathcal{M}(M)$ denotes the module of all tangent vector fields on M over the ring $C^{\infty}(M)$. Also, if $F \to M$ is a vector bundle over M then $\Gamma(F)$ denotes the $C^{\infty}(M)$ -module of all smooth cross-setions in F, and F_x denotes the fibre over $x \in M$ in F.

We recall that the Weyl connection of H^m is flat while the curvature R^* of ∇^* is furnished by

$$R^*(X, Y)Z = \frac{1}{4} \{ [\omega^*(X)Y - \omega^*(Y)X] \omega^*(Z) + [g_0(X, Z)\omega^*(Y) - g_0(Y, Z)\omega^*(X)]B^* \} + g_0(Y, Z)X - g_0(X, Z)Y$$

for any $X, Y, Z \in \mathcal{X}(H^m)$. See [4]. If M is a submanifold of H^m we denote by h, ∇ , a_{ξ} the second fundamental form, the induced connection and the Weingarten operator (corresponding to the normal section $\xi \in \Gamma(E)$). These satisfy the Gauss and Weingarten equations:

$$\nabla_{X}^{*}Y = \nabla_{X}Y + h(X, Y), \qquad \nabla_{X}^{*}\zeta = -a_{\xi}X + \nabla_{X}^{\perp}\zeta$$

for $X, Y \in \mathcal{X}(M)$, $\xi \in \Gamma(E)$. Next we define $D_X Y = \tan(D_X^* Y)$, $A_{\xi} X = -\tan(D_X^* \xi)$, $H(X, Y) = \cot(D_X^* Y)$, $D_X^{\perp} \xi = \cot(D_X^* \xi)$, for all $X, Y \in \mathcal{X}(M)$, $\xi \in \Gamma(E)$. Then (2.1), (2.3) straightforwardly lead to

(2.4)
$$D_X Y = \nabla_X Y - \frac{1}{2}(\omega(X)Y + \omega(Y)X - g(X, Y)B),$$

$$H(X, Y) = h(X, Y) + \frac{1}{2}g(X, Y)\operatorname{nor}(B^*),$$

$$A_{\xi} X = a_{\xi} X + \frac{1}{2}\omega^*(\xi)X,$$

$$D_Y^{\perp} \xi = \nabla_Y^{\perp} \xi - \frac{1}{2}\omega(X)\xi.$$

Here $B = \tan(B^*)$. We establish the following:

Lemma 1. Let M be an invariant submanifold of H^m . The following formulae hold:

$$(2.5) a_{\xi}JX + Ja_{\xi}X = -\omega^*(\xi)JX,$$

(2.6)
$$a_{J\xi}X = Ja_{\xi}X + \frac{1}{2}(\omega^{*}(\xi)JX - \omega^{*}(J\xi)X),$$

$$\nabla_{\mathbf{r}}^{\perp}J\xi=J\nabla_{\mathbf{r}}^{\perp}\xi,$$

for any $X \in \mathcal{X}(M)$, $\xi \in \Gamma(E)$.

PROOF. Since M is invariant, by $D^*J = 0$ one has $A_{\xi}JX + JA_{\xi}X = 0$, $A_{J\xi}X = JA_{\xi}X$. These and (2.4) yield (2.5) and (2.6). Similarly (2.7) follows from $D_X^{\dagger}J\xi = JD_X^{\dagger}\xi$. Q.E.D.

Lemma 2. The Gauss-Codazzi-Ricci equations of a submanifold M in H^m are given by:

(2.8)
$$R(X, Y)Z = (X \wedge Y)Z + \frac{1}{4} \{ [\omega(X)Y - \omega(Y)X]\omega(Z) + [g(X, Z)\omega(Y) - g(Y, Z)\omega(X)]B \} + a_{h(Y, Z)}X - a_{h(X, Z)}Y,$$

(2.9)
$$(\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z) = \frac{1}{4}(g(X, Z)\omega(Y) - g(Y, Z)\omega(X))\operatorname{nor}(B^*),$$

(2.10)
$$g_0(R^{\perp}(X, Y)\xi, \eta) - g([a_{\xi}, a_{\eta}]X, Y) = 0,$$

for all X, Y, $Z \in \mathcal{X}(M)$, ξ , $\eta \in \Gamma(E)$.

The proof of Lemma 2 follows from (2.2) and (2.3) in a straightforward manner; for instance, by (2.2) we have

$$R^*(X, Y)\xi = \frac{1}{4}(\omega(X)Y - \omega(Y)X)\omega^*(\xi),$$

such that $nor(R^*(X, Y)\xi) = 0$.

3. Proof of Theorem 1

Let us combine (1.1) with (2.10) and put $\eta = J\xi$ in the resulting equation; this gives

(3.1)
$$\rho_0 \Omega(X, Y) \| \xi \|^2 - g([a_{\xi}, a_{\eta}]X, Y) = 0$$

for any $X, Y \in \mathcal{X}(M), \xi \in \Gamma(E)$. At this point, by Lemma 1, we establish

$$(3.2) [a_{\xi}, a_{J\xi}]X = -2J(a_{\xi}^2X + \omega^*(\xi)a_{\xi}X + \frac{1}{4}\omega^*(\xi)^2X).$$

Now the substitution of (3.2) into (3.1) leads to

(3.3)
$$a_{\varepsilon}^{2} + \omega^{*}(\xi)a_{\varepsilon} + \frac{1}{2}[\rho_{0} \| \xi \|^{2} + \frac{1}{2}\omega^{*}(\xi)^{2}]I = 0.$$

Let us put m = n + p, $p \ge 1$, i.e. n < m, by hypothesis. Then either p = 1, i.e. M is a complex hypersurface of H^m , or p > 2. For the last case let $\{V_1, \ldots, V_p, JV_1, \ldots, JV_p\}$ be an orthonormal frame (locally defined) on E. Note that (3.3) is equivalent to

(3.4)
$$A_{\xi}^{2} = -\frac{1}{2}\rho_{0} \|\xi\|^{2}I.$$

Now, on the one hand $A_{V_i}A_{V_j} + A_{V_j}A_{V_i} = 0$, $i \neq j$; on the other (by the Ricci equations (2.10) for $\xi = V_i$, $\eta = V_j$) we have $a_{V_i}a_{V_j} - a_{V_j}a_{V_i} = 0$ which yields $A_{V_i}A_{V_j} - A_{V_j}A_{V_i} = 0$, such that $A_{V_i}A_{V_j} = 0$, $i \neq j$; finally, by (3.4) we obtain $A_{\xi} = 0$ or

$$(3.5) a_{\xi} = -\frac{1}{2}\omega^*(\xi)I,$$

that is, M is totally-umbilical, and $\rho_0 = 0$, i.e. $R^{\perp} = 0$. Now substitution from (3.5) into the Gauss equation (2.8) and further contraction of indices lead to

(3.6)
$$\operatorname{Ric}(X, Y) = \left[2(2n-1) - \frac{n}{2} \| \omega \|^2 \right] g(X, Y) - \frac{n-1}{2} \omega(X) \omega(Y),$$

i.e., M is quasi-Einstein. Our Theorem 1 might be contrasted with a result in I. Ishihara [9].

4. Proof of Theorem 3

We define a covariant derivative of R^{\perp} in the usual manner, cf. [15, p. 115]. Then

(4.1)
$$\sum_{\text{cvel.}} (\nabla_X R^\perp)(Y, Z) = 0$$

for any X, Y, $Z \in \mathcal{X}(M)$. Here $\Sigma_{\text{cycl.}}$ denotes the cyclic sum over X, Y, Z. On the other hand

$$(4.2) \qquad (\nabla_X R^{\perp})(Y, Z)\xi = X(\rho_0)\Omega(Y, Z)J\xi + \rho_0(\nabla_X \Omega)(Y, Z)J\xi.$$

Of course, the induced connection of the invariant submanifold M is not almost-complex; in turn, we have

(4.3)
$$J\nabla_X Y = \nabla_X JY + \frac{1}{2}(\omega(Y)JX - \theta(Y)X + \Omega(X, Y)B + g(X, Y)A)$$

where θ denotes the 1-form induced on M by the anti-Lee form $\theta^* = \omega^* \circ J$, and $A = \tan(A^*)$, $A^* = -JB^*$. Consequently, the Kaehler 2-form is not parallel any longer. Yet (4.3) yields

(4.4)
$$(\nabla_X \Omega)(Y, Z)$$

$$= \frac{1}{2} [\theta(Z)g(X, Y) - \theta(Y)g(X, Z) + \omega(Z)\Omega(X, Y) - \omega(Y)\Omega(X, Z)].$$

Finally, part (i) of Theorem 3 follows from the more general:

PROPOSITION. Any invariant submanifold, of a l.c.K. manifold, with semiflat normal connection for some $\rho_0: M \to (0, +\infty)$, is globally conformal Kaehler provided M has complex dimension $n \ge 2$.

Indeed, combining (4.2), (4.4) and (4.1) we obtain

(4.5)
$$\sum_{\text{cycl.}} X(\rho_0)\Omega(Y,Z) = -3\rho_0(\omega \wedge \Omega)(X,Y,Z).$$

Let us put Z = JY in (4.5); since $n \ge 2$ one may choose X orthogonal to Y, JY. Thus $d\rho_0 + \rho_0 \omega = 0$. Q.E.D.

To prove the second part of Theorem 3 we suppose M is Einstein, i.e. $Ric = \lambda g$, for some $\lambda \in IR$. By (3.6) we obtain

(4.6)
$$\left[2(2n-1) - \frac{n}{2} \| \omega \|^2 - \lambda \right] X = \frac{n-1}{2} \omega(X) B$$

for any $X \in \mathcal{X}(M)$. Let us put X = B in (4.6) and take the inner product with B. Since M is strongly non-Kaehler (i.e. $\omega_x \neq 0$, at any $x \in M$), we obtain

$$2(2n-1)-\frac{2n-1}{2} \|\omega\| = \lambda;$$

substitution in (4.6) now gives $\omega(X)B = \|\omega\|^2 X$, which for X = JB furnishes $\|\omega\| = 0$, a contradiction.

5. Submanifolds with non-positive Yamabe invariant

Let M^{2n} be a submanifold of H^m . By (2.8) we may compute the Ricci curvature of M^{2n} :

(5.1)
$$R_{jk} = (2n - 1 - \frac{1}{4} \| \omega \|^2) g_{jk} - \frac{n-1}{2} \omega_j \omega_k + (a_{h(\partial_j,\partial_k)} \partial_i)^i - (a_{h(\partial_i,\partial_k)} \partial_j)^i$$

where $\partial_i = \partial/\partial x^i$. Consequently, the scalar curvature ρ of M^{2n} is expressed by

(5.2)
$$\rho = (2n-1)(2n-\frac{1}{2} \| \omega \|^2) + \sum_{b=1}^{\operatorname{codim}(M^{2n})} [(\operatorname{Trace}(a_b))^2 - \operatorname{Trace}(a_b^2)].$$

If M^{2n} is totally-umbilical then (5.1) leads to our Theorem 2, i.e. we obtain

(5.3) Ric =
$$[2n-1-\frac{1}{4} \| \omega \|^2 + (2n-1) \| \mu \|^2]g - \frac{n-1}{2} \omega \otimes \omega$$

where μ denotes the mean curvature vector of M^{2n} ; also (5.2) reduces to

(5.4)
$$\rho = (2n-1)(2n-\frac{1}{2}\|\omega\|^2) + 2n(2n-1)\|\mu\|^2.$$

Furthermore, we prove our Theorem 4. If $\mu_0 \le 0$ then there exists $\varphi \in C^{\infty}(M^{2n})$, $\varphi \ge 0$, $\varphi \ne 0$, such that $I(\varphi) \le 0$. Using (1.2), (5.4) we obtain

$$\frac{2}{n-1} \int_{M^{2n}} \|d\varphi\|^2 * 1 + \int_{M^{2n}} \varphi^2 (2n - \frac{1}{2} \|\omega\|^2) * 1$$
$$+ 2n \int_{M^{2n}} \varphi^2 \|\mu\|^2 * 1 \le 0$$

where * 1 denotes the canonical Riemann measure on the compact submanifold M^{2n} . Since $n \ge \frac{1}{4} \|\omega\|^2$ we obtain $d\varphi = 0$, i.e. $\varphi = \text{const}$ (we always assume M^{2n} connected). Yet $\varphi \ne 0$ yields $\|\mu\| = 0$; thus h = 0 since M^{2n} is totally-umbilical. Moreover, we obtain ω is parallel. Consequently, if M^{2n} is invariant, then it is a l.c.K. manifold with a parallel Lee form, i.e. a g.H.m., cf. [12], [14]. To prove the last statement of Theorem 4, let K be the curvature of D, i.e. the connection induced on M^{2n} by the Weyl connection of the ambient Hopf manifold. We recall [4]:

$$g(K(X, Y)Z, U) = R(U, Z, X, Y) - \frac{1}{2}L(X, Z)g(Y, U) + \frac{1}{2}L(X, U)g(Y, Z)$$

$$+ \frac{1}{2}L(Y, Z)g(X, U) - \frac{1}{2}L(Y, U)g(X, Z)$$

$$+ \omega^*(h(X, Z))g(Y, U) - \omega^*(h(Y, Z))g(X, U)$$

$$+ \omega^*(h(Y, U))g(X, Z) - \omega^*(h(X, U))g(Y, Z)$$

$$- \frac{1}{4}(\|\omega^*\|^2 + \|\operatorname{nor}(B^*)\|^2)$$

$$\times (g(Y, Z)g(X, U) - g(X, Z)g(Y, U))$$

for any X, Y, Z, $U \in \mathcal{X}(M^{2n})$. Here R denotes the Riemann-Christoffel tensor of M^{2n} . Also $L(X, Y) = (\nabla_X \omega)Y + \frac{1}{2}\omega(X)\omega(Y)$ and $\|\omega^*\| = 2$, cf. [12]. Let (x^i) be real-analytic local coordinates on H^m ; we recall that g_0 is locally conformal to the (local) Kaehler metrics $g_0' = \delta_{ij} dx^i dx^j$, i.e. $g_0 = |x|^{-2} g_0'$, where $|x| = (\delta_{ij} x^i x^j)^{1/2}$. Let f be the restriction to M^{2n} of $2 \log |x|$. Let also k' be the sectional curvature of the metrics induced by the local Kaehler metrics g_0' on M^{2n} . By (5.5) we obtain

(5.6)
$$\exp(-f)k'(p) = k(p) - 1 + \frac{1}{2}(\omega(X)^2 + \omega(Y)^2)$$

for any $p \in G_2(M^{2n})$ and any g-orthonormal basis $\{X, Y\}$ in p. The condition in Theorem 4 yields $k' \ge 0$; as $\mu_0 \le 0$ we may apply a result of I. Vaisman, i.e. Theorem 3 in [13, p. 281], to conclude that M^{2n} is a g.c.K. manifold.

6. Conformally flat submanifolds of a Hopf manifold

Let M^{2n} be a totally-umbilical submanifold of H^m , n > 2. We consider the Weyl conformal curvature tensor of M^{2n} :

(6.1)
$$W(X, Y) = R(X, Y) - \frac{1}{2(n-1)} (QX \wedge Y + X \wedge QY) + \frac{\rho}{4(n-1)(2n-1)} X \wedge Y$$

for all $X, Y \in \mathcal{X}(M^{2n})$. Here Q = # Ric, or, by (5.3),

(6.2)
$$QX = [(2n-1)(1+\|\mu\|^2) - \frac{1}{4}\|\omega\|^2]X - \frac{n-1}{2}\omega(X)B.$$

Taking into account (5.4), (6.2) the expression of the conformal tensor (6.1) becomes

$$W(X, Y) = R(X, Y) + \frac{1}{2(n-1)} \left[\frac{\|\omega\|^2}{4} - (3n-2)(1 + \|\mu\|^2) \right] X \wedge Y$$

$$(6.3)$$

$$+ \frac{1}{4} [\omega(Y)X \wedge B - \omega(X)Y \wedge B].$$

Finally, one may use the Gauss equation (2.8) and

$$a_{h(Y,\cdot)}X - a_{h(X,\cdot)}Y = \|\mu\|^2 X \wedge Y;$$

consequently (6.3) reduces to

(6.4)
$$W(X, Y) = \frac{1}{2(n-1)} \left[\frac{\|\omega\|^2}{4} - n(1 + \|\mu\|^2) \right] \cdot X \wedge Y$$

for any $X, Y \in \mathcal{X}(M^{2n})$. Now W = 0 iff

(6.5)
$$\|\omega\|^2 = 4n(1 + \|\mu\|^2),$$

i.e. iff $\rho = 0$, cf. our (5.4). This proves Theorem 5. As remarked is §1, Theorem 2 in [7, p. 234] might not be applied to our case since (5.3) yields

(6.6)
$$\frac{\|\operatorname{Ric}\|}{1+\|\mu\|^2}=(n-1)[2n(2n-1)]^{1/2}.$$

To prove Theorem 6, by (2.8) we obtain the expression of the Riemann-Christoffel tensor of the (totally-umbilical) submanifold M^{2n} , i.e.

$$R(W, Z, X, Y) = (1 + \|\mu\|^2)(g(Y, Z)g(X, W) - g(X, Z)g(Y, W))$$

$$+ \frac{1}{4} \{ [\omega(X)g(Y, W) - \omega(Y)g(X, W)]\omega(Z)$$

$$+ [g(X, Z)\omega(Y) - g(Y, Z)\omega(X)]\omega(W) \}$$

which yields the sectional curvature of M^{2n} :

$$k(p) = 1 + \|\mu\|^2 - \frac{1}{4} [\omega(X)^2 + \omega(Y)^2],$$
 for any $p \in G_2(M^{2n})$,

spanned by the orthonormal vectors X, Y. Suppose now that M^{2n} is a space-form, i.e. k(p) = c, $c \in IR$, for all $p \in G_2(M^{2n})$. Then $\rho = 2n(2n-1)c$; thus W = 0 yields c = 0 or $4(1 + \|\mu\|^2) = \omega(X)^2 + \omega(Y)^2$; let $Y = \|B\|^{-1}B$. Then n = 0 by (6.5), a contradiction.

7. Totally-umbilical submanifolds of zero scalar curvature

Let M^{2n} be an invariant submanifold of H^m , $\rho=0$, $h=g\otimes \mu$. By a theorem in [4] for each invariant submanifold in a l.c.K. manifold the mean curvature vector is given by $\mu=-\frac{1}{2}\operatorname{nor}(B^*)$. Also $\|\omega^*\|^2=\|\omega\|^2+\|\operatorname{nor}(B^*)\|^2$, $\|\omega^*\|=2$, yield (by (6.5)) $\|\omega\|^2=8n/(n+1)$; but $4-8n/(n+1)\geq 0$ yields n=1 and $\mu=0$, such that M^2 is a minimal surface in H^m ; thus h=0 and by a theorem in [4], M^2 is flat.

To establish Theorem 8, let

(7.1)
$$P(X, Y) = R(X, Y) - \frac{1}{n-1} (X \wedge Y) \circ Q$$

be the projective curvature tensor of M^{2n} , $n \ge 2$. By (6.2), (2.8), we put (7.1) in the following form:

(7.2)
$$P(X, Y)Z = \frac{1}{n-1} \left[\frac{1}{4} \| \omega \|^2 - n(1 + \| \mu \|^2) \right] (X \wedge Y)Z$$
$$+ \frac{1}{4} \{ [\omega(Y)X - \omega(X)Y] \omega(Z) + [g(X, Z)\omega(Y) - g(Y, Z)\omega(X)]B \}.$$

If $\rho = 0$ then by (6.5) and P = 0 we obtain

$$(7.3) \qquad (\omega(Y)X - \omega(X)Y)\omega(Z) = (g(Y, Z)\omega(X) - g(X, Z)\omega(Y))B.$$

We put Z = B in (7.3); $\|\omega\| \neq 0$ everywhere gives $\omega(Y)X - \omega(X)Y = 0$ which, together with (7.3), gives

$$g(Y,Z) = \frac{1}{\parallel \omega \parallel^2} \omega(Y)\omega(X),$$

and in particular $\omega(Y) = \|\omega\| \|Y\|$. This yields $\|Y\|X - \|X\| Y = 0$ for any X, Y, a contradiction.

REFERENCES

- 1. T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296.
- 2. B. Y. Chen and P. Picinni, The canonical foliations of a locally conformal Kaehler manifold, Ann. Mat. 35 (1985), 289-305.
- 3. J. Deprez, M. Petrovic and L. Verstralen, New intrinsic characterizations of conformally flat hypersurfaces and of Einstein hypersurfaces, Rend. Sem. Fac. Sci. Univ. Cagliari (2) 55 (1985), 67-78.

- 4. S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I submitted to Geom. Dedic., II submitted to Atti Semin. Mat. Fis. Univ. Modena (1987).
 - 5. S. Goldberg, Curvature and Homology, Academic Press, New York, 1962.
- 6. S. Goldberg and I. Vaisman, On compact locally conformal Kaehler manifolds with non-negative sectional curvature, Ann. Fac. Sci. Toulouse 2 (1980), 117-123.
- 7. S. Goldberg and M. Okumura, Conformally flat manifolds and a pinching problem on the Ricci tensor, Proc. Am. Math. Soc. 58 (1976), 234-236.
- 8. S. Ianus, K. Matsumoto and L. Ornea, Complex hypersurfaces of a generalized Hopf manifold, submitted to Tensor (1987).
- 9. I. Ishihara, Kaehler submanifolds satisfying a certain condition on normal connection, Atti Accad. Naz. Lincei LXII (1977), 30-35.
- 10. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publishers, New York, 1969.
- 11. J. M. Lee and T. H. Parker, *The Yamabe problem*, Bull. Am. Math. Soc. (1) 17 (1987), 37-91.
- 12. I. Vaisman, Locally conformal Kaehler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284.
- 13. I. Vaisman, A theorem on compact locally conformal Kaehler manifolds, Proc. Am. Math. Soc. (2) 75 (1979), 279-283.
 - 14. I. Vaisman, Generalized Hopf manifolds, Geom. Dedic. 13 (1982), 231-255.
- 15. K. Yano and M. Kon, C.R. submanifolds of Kaehlerian and Sasakian manifolds, in Progress in Math. (J. Coates and S. Helgason, eds.), Birkhauser, Boston-Basel-Stuttgart, 1983.